Package index
-
BestCut() - Best Cutpoint for a ROC Curve
-
BreuschPaganTest() - Breusch-Pagan Test
-
CP()print(<CP>)plot(<CP>) - Complexity Parameter of an rpart Model
-
CoeffDiffCI() - Confidence Interval for the Difference of Two Coefficients in a Linear Model
-
FitMod()predict(<FitMod>)plot(<FitMod>)summary(<FitMod>)drop1(<FitMod>) - Wrapper for Several Model Functions
-
LeafRates()plot(<LeafRates>) - Leafrates for the Nodes of an 'rpart' Tree
-
LogitBoost() - LogitBoost Classification Algorithm
-
ModTools-packageModTools - Regression and Classification Tools
-
Node() - Nodes and Splits in an rpart Tree
-
OverSample()UnderSample() - Oversample and Undersample
-
PlotLift() - Lift Charts to Compare Binary Predictive Models
-
PredictCI() - Confidence Intervals for Predictions of a GLM
-
ROC() - Build a ROC curve
-
RefLevel() - Used Reference Levels in a Linear Model
-
Response() - Extract the Response from Several Models
-
RobSummary() - Robust Summary for Linear Models
-
Rules() - Extract Rules from 'rpart' Object
-
SplitTrainTest() - Split DataFrame in Train an Test Sample
-
TModC()plot(<TModC>) - Compare Classification Models
-
Tune() - Tune Classificators
-
VarImp()plot(<VarImp>)print(<VarImp>) - Variable Importance for Regression and Classification Models
-
d.glass - Measurements of Forensic Glass Fragments
-
Tobit() - Tobit Regression