Robust Summary for Linear Models
RobSummary.Rd
For poisson models with mild violation of the distribution assumption that the variance equals the mean, Cameron and Trivedi (2009) recommended using robust standard errors for the parameter estimates. The function uses the function vcovHC
from the package sandwich to obtain the robust standard errors and calculate the p-values accordingly.
It returns a matrix containing the usual results in the model summary, comprising the parameter estimates, their robust standard errors, p-values, extended with the 95% confidence interval.
Arguments
- mod
the model for which robust standard errors should be calculated
- conf.level
the confidence level, default is 95%.
- type
a character string specifying the estimation type. Details in
vcovHC()
.
Details
Further details in https://stats.oarc.ucla.edu/r/dae/poisson-regression/
Value
a p x 6 matrix with columns for the estimated coefficient, its standard error, t- or z-statistic, the corresponding (two-sided) p-value, the lower and upper confidence interval.
References
Cameron, A. C. and Trivedi, P. K. (2009) Microeconometrics Using Stata. College Station, TX: Stata Press.
Examples
r.lm <- lm(Fertility ~ ., swiss)
RobSummary(r.lm)
#> est lci uci rse zval
#> (Intercept) 66.9151817 47.51386488 86.31649848 9.60679535 6.965401
#> Agriculture -0.1721140 -0.29238964 -0.05183831 0.05955594 -2.889955
#> Examination -0.2580082 -0.72091206 0.20489558 0.22921240 -1.125630
#> Education -0.8709401 -1.22176091 -0.52011921 0.17371316 -5.013668
#> Catholic 0.1041153 0.04649549 0.16173517 0.02853116 3.649180
#> Infant.Mortality 1.0770481 0.31060736 1.84348892 0.37951237 2.837979
#> pval
#> (Intercept) 1.844004e-08
#> Agriculture 6.132937e-03
#> Examination 2.668685e-01
#> Education 1.073353e-05
#> Catholic 7.364054e-04
#> Infant.Mortality 7.028555e-03