lines.loess.Rd
Add a loess smoother to an existing plot. The function first calculates the prediction of a loess object for a reasonable amount of points, then adds the line to the plot and inserts a polygon with the confidence intervals.
# S3 method for class 'loess'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",
type = "l", n = 100, conf.level = 0.95, args.band = NULL, ...)
# S3 method for class 'smooth.spline'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",
type = "l", conf.level = 0.95, args.band = NULL, ...)
# S3 method for class 'SmoothSpline'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",
type = "l", conf.level = 0.95, args.band = NULL, ...)
the loess or smooth.spline object to be plotted.
linecolor of the smoother. Default is DescTools's col1
.
line width of the smoother.
line type of the smoother.
type of plot, defaults to "l"
.
number of points used for plotting the fit.
confidence level for the confidence interval. Set this to NA, if no confidence band should be plotted. Default is 0.95.
list of arguments for the confidence band, such as color or border (see DrawBand
).
further arguments are passed to the smoother (loess()
or SmoothSpline()
).
Loess can result in heavy computational load if there are many points!
par(mfrow=c(1,2))
x <- runif(100)
y <- rnorm(100)
plot(x, y)
lines(loess(y~x))
plot(temperature ~ delivery_min, data=d.pizza)
lines(loess(temperature ~ delivery_min, data=d.pizza))
plot(temperature ~ delivery_min, data=d.pizza)
lines(loess(temperature ~ delivery_min, data=d.pizza), conf.level = 0.99,
args.band = list(col=SetAlpha("red", 0.4), border="black") )
# the default values from scatter.smooth
lines(loess(temperature ~ delivery_min, data=d.pizza,
span=2/3, degree=1, family="symmetric"), col="red")