RevWeibull.RdDensity function, distribution function, quantile function and random generation for the reverse (or negative) Weibull distribution with location, scale and shape parameters.
dRevWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pRevWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qRevWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rRevWeibull(n, loc=0, scale=1, shape=1)
dNegWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pNegWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qNegWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rNegWeibull(n, loc=0, scale=1, shape=1)The reverse (or negative) Weibull distribution function with parameters \(loc = a\), \(scale = b\) and \(shape = s\) is $$G(z) = \exp\left\{-\left[-\left(\frac{z-a}{b}\right) \right]^s\right\}$$ for \(z < a\) and one otherwise, where \(b > 0\) and \(s > 0\).
Within extreme value theory the reverse Weibull distibution (also known as the negative Weibull distribution) is often referred to as the Weibull distribution. We make a distinction to avoid confusion with the three-parameter distribution used in survival analysis, which is related by a change of sign to the distribution given above.
dRevWeibull and dNegWeibull give the density function,
pRevWeibull and pNegWeibull give the distribution function,
qRevWeibull and qNegWeibull give the quantile function,
rRevWeibull and rNegWeibull generate random deviates.
dRevWeibull(-5:-3, -1, 0.5, 0.8)
#> [1] 0.005386194 0.016885315 0.058502349
pRevWeibull(-5:-3, -1, 0.5, 0.8)
#> [1] 0.005102464 0.015101477 0.048246445
qRevWeibull(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
#> [1] 1.969986 1.923317 1.862180 1.784071
rRevWeibull(6, -1, 0.5, 0.8)
#> [1] -1.092336 -3.983379 -1.197627 -1.653867 -1.066734 -1.302922
p <- (1:9)/10
pRevWeibull(qRevWeibull(p, -1, 2, 0.8), -1, 2, 0.8)
#> [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9