RevWeibull.Rd
Density function, distribution function, quantile function and random generation for the reverse (or negative) Weibull distribution with location, scale and shape parameters.
dRevWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pRevWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qRevWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rRevWeibull(n, loc=0, scale=1, shape=1)
dNegWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pNegWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qNegWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rNegWeibull(n, loc=0, scale=1, shape=1)
The reverse (or negative) Weibull distribution function with parameters \(loc = a\), \(scale = b\) and \(shape = s\) is $$G(z) = \exp\left\{-\left[-\left(\frac{z-a}{b}\right) \right]^s\right\}$$ for \(z < a\) and one otherwise, where \(b > 0\) and \(s > 0\).
Within extreme value theory the reverse Weibull distibution (also known as the negative Weibull distribution) is often referred to as the Weibull distribution. We make a distinction to avoid confusion with the three-parameter distribution used in survival analysis, which is related by a change of sign to the distribution given above.
dRevWeibull
and dNegWeibull
give the density function,
pRevWeibull
and pNegWeibull
give the distribution function,
qRevWeibull
and qNegWeibull
give the quantile function,
rRevWeibull
and rNegWeibull
generate random deviates.
dRevWeibull(-5:-3, -1, 0.5, 0.8)
#> [1] 0.005386194 0.016885315 0.058502349
pRevWeibull(-5:-3, -1, 0.5, 0.8)
#> [1] 0.005102464 0.015101477 0.048246445
qRevWeibull(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
#> [1] 1.969986 1.923317 1.862180 1.784071
rRevWeibull(6, -1, 0.5, 0.8)
#> [1] -1.092336 -3.983379 -1.197627 -1.653867 -1.066734 -1.302922
p <- (1:9)/10
pRevWeibull(qRevWeibull(p, -1, 2, 0.8), -1, 2, 0.8)
#> [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9