GenExtrVal.RdDensity function, distribution function, quantile function and random generation for the generalized Extreme value (GenExtrVal) distribution with location, scale and shape parameters.
dGenExtrVal(x, loc=0, scale=1, shape=0, log = FALSE)
pGenExtrVal(q, loc=0, scale=1, shape=0, lower.tail = TRUE)
qGenExtrVal(p, loc=0, scale=1, shape=0, lower.tail = TRUE)
rGenExtrVal(n, loc=0, scale=1, shape=0)Vector of quantiles.
Vector of probabilities.
Number of observations.
Location, scale and shape parameters; the
shape argument cannot be a vector (must have length one).
Logical; if TRUE, the log density is returned.
Logical; if TRUE (default), probabilities
are P[X <= x], otherwise, P[X > x]
The GenExtrVal distribution function with parameters \(loc = a\), \(scale = b\) and \(shape = s\) is $$G(z) = \exp\left[-\{1+s(z-a)/b\}^{-1/s}\right]$$ for \(1+s(z-a)/b > 0\), where \(b > 0\). If \(s = 0\) the distribution is defined by continuity. If \(1+s(z-a)/b \leq 0\), the value \(z\) is either greater than the upper end point (if \(s < 0\)), or less than the lower end point (if \(s > 0\)).
The parametric form of the GenExtrVal encompasses that of the Gumbel, Frechet and reverse Weibull distributions, which are obtained for \(s = 0\), \(s > 0\) and \(s < 0\) respectively. It was first introduced by Jenkinson (1955).
dGenExtrVal gives the density function, pGenExtrVal gives the
distribution function, qGenExtrVal gives the quantile function,
and rGenExtrVal generates random deviates.
Jenkinson, A. F. (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Quart. J. R. Met. Soc., 81, 158–171.
dGenExtrVal(2:4, 1, 0.5, 0.8)
#> [1] 0.17210639 0.06706381 0.03428205
pGenExtrVal(2:4, 1, 0.5, 0.8)
#> [1] 0.7386812 0.8467772 0.8948490
qGenExtrVal(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
#> [1] 5.157141 3.449973 2.800811 2.444700
rGenExtrVal(6, 1, 0.5, 0.8)
#> [1] 0.6603152 1.8191045 0.6002917 0.7090576 0.6405541 4.3192024
p <- (1:9)/10
pGenExtrVal(qGenExtrVal(p, 1, 2, 0.8), 1, 2, 0.8)
#> [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9