PlotCorr.Rd
This function produces a graphical display of a correlation matrix. The cells of the matrix can be shaded or colored to show the correlation value.
PlotCorr(x, cols = colorRampPalette(c(Pal()[2], "white",
Pal()[1]), space = "rgb")(20),
breaks = seq(-1, 1, length = length(cols) + 1),
border = "grey", lwd = 1,
args.colorlegend = NULL, xaxt = par("xaxt"), yaxt = par("yaxt"),
cex.axis = 0.8, las = 2, mar = c(3, 8, 8, 8), mincor = 0,
main = "", clust = FALSE, ...)
x is a correlation matrix to be visualized.
the colors for shading the matrix. Uses the package's option "col1"
and "col2"
as default.
a set of breakpoints for the colours: must give one more breakpoint than colour. These are passed to image()
function.
If breaks is specified then the algorithm used follows cut
, so intervals are closed on the right and open on the left except for the lowest interval.
color for borders. The default is grey
. Set this argument to NA
if borders should be omitted.
line width for borders. Default is 1.
list of arguments for the ColorLegend
. Use NA
if no color legend should be painted.
parameter to define, whether to draw an x-axis, defaults to "n"
.
parameter to define, whether to draw an y-axis, defaults to "n"
.
character extension for the axis labels.
the style of axis labels.
sets the margins, defaults to mar = c(3, 8, 8, 8) as we need a bit more room on the right.
numeric value between 0 and 1, defining the smallest correlation that is to be displayed. If this is >0 then all correlations with a lower value are suppressed.
character, the main title.
logical. If set to TRUE
, the correlations will be clustered in order to aggregate similar values.
the dots are passed to the function image
, which produces the plot.
no values returned.
image
, ColorLegend
, corrgram()
, PlotWeb()
m <- cor(d.pizza[,sapply(d.pizza, IsNumeric, na.rm=TRUE)], use="pairwise.complete.obs")
PlotCorr(m, cols=colorRampPalette(c("red", "black", "green"), space = "rgb")(20))
PlotCorr(m, cols=colorRampPalette(c("red", "black", "green"), space = "rgb")(20),
args.colorlegend=NA)
m <- PairApply(d.diamonds[, sapply(d.diamonds, is.factor)], CramerV, symmetric=TRUE)
PlotCorr(m, cols = colorRampPalette(c("white", "steelblue"), space = "rgb")(20),
breaks=seq(0, 1, length=21), border="black",
args.colorlegend = list(labels=sprintf("%.1f", seq(0, 1, length = 11)), frame=TRUE)
)
title(main="Cramer's V", line=2)
text(x=rep(1:ncol(m),ncol(m)), y=rep(1:ncol(m),each=ncol(m)),
label=sprintf("%0.2f", m[,ncol(m):1]), cex=0.8, xpd=TRUE)
# Spearman correlation on ordinal factors
csp <- cor(data.frame(lapply(d.diamonds[,c("carat", "clarity", "cut", "polish",
"symmetry", "price")], as.numeric)), method="spearman")
PlotCorr(csp)
m <- cor(mtcars)
PlotCorr(m, col=Pal("RedWhiteBlue1", 100), border="grey",
args.colorlegend=list(labels=Format(seq(-1,1,.25), digits=2), frame="grey"))
# display only correlation with a value > 0.7
PlotCorr(m, mincor = 0.7)
x <- matrix(rep(1:ncol(m),each=ncol(m)), ncol=ncol(m))
y <- matrix(rep(ncol(m):1,ncol(m)), ncol=ncol(m))
txt <- Format(m, digits=3, ldigits=0)
idx <- upper.tri(matrix(x, ncol=ncol(m)), diag=FALSE)
# place the text on the upper triagonal matrix
text(x=x[idx], y=y[idx], label=txt[idx], cex=0.8, xpd=TRUE)
# or let's get rid of all non significant correlations
p <- PairApply(mtcars, function(x, y) cor.test(x, y)$p.value, symmetric=TRUE)
# or somewhat more complex with outer
p0 <- outer(1:ncol(m), 1:ncol(m),
function(a, b)
mapply(
function(x, y) cor.test(mtcars[, x], mtcars[, y])$p.value,
a, b))
# ok, got all the p-values, now replace > 0.05 with NAs
m[p > 0.05] <- NA
PlotCorr(m)
# the text
n <- ncol(m)
text(x=rep(seq(n), times=n),
y=rep(rev(seq(n)), rep.int(n, n)),
labels=Format(m, digits=2, na.form=""),
cex=0.8, xpd=TRUE)
# the text could also be set with outer, but this function returns an error,
# based on the fact that text() does not return some kind of result
# outer(X = 1:nrow(m), Y = ncol(m):1,
# FUN = "text", labels = Format(m, digits=2, na.form = ""),
# cex=0.8, xpd=TRUE)
# put similiar correlations together
PlotCorr(m, clust=TRUE)
# same as
idx <- order.dendrogram(as.dendrogram(
hclust(dist(m), method = "mcquitty")
))
PlotCorr(m[idx, idx])
# plot only upper triangular matrix and move legend to bottom
m <- cor(mtcars)
m[lower.tri(m, diag=TRUE)] <- NA
p <- PairApply(mtcars, function(x, y) cor.test(x, y)$p.value, symmetric=TRUE)
m[p > 0.05] <- NA
PlotCorr(m, mar=c(8,8,8,8), yaxt="n",
args.colorlegend = list(x="bottom", inset=-.15, horiz=TRUE,
height=abs(LineToUser(line = 2.5, side = 1)),
width=ncol(m)))
mtext(text = rev(rownames(m)), side = 4, at=1:ncol(m), las=1, line = -5, cex=0.8)
text(1:ncol(m), ncol(m):1, colnames(m), xpd=NA, cex=0.8, font=2)
n <- ncol(m)
text(x=rep(seq(n), times=n),
y=rep(rev(seq(n)), rep.int(n, n)),
labels=Format(t(m), digits=2, na.form=""),
cex=0.8, xpd=TRUE)