GenPareto.RdDensity function, distribution function, quantile function and random generation for the generalized Pareto distribution (GenPareto) with location, scale and shape parameters.
dGenPareto(x, loc=0, scale=1, shape=0, log = FALSE)
pGenPareto(q, loc=0, scale=1, shape=0, lower.tail = TRUE)
qGenPareto(p, loc=0, scale=1, shape=0, lower.tail = TRUE)
rGenPareto(n, loc=0, scale=1, shape=0)Vector of quantiles.
Vector of probabilities.
Number of observations.
Location, scale and shape parameters; the
shape argument cannot be a vector (must have length one).
Logical; if TRUE, the log density is returned.
Logical; if TRUE (default), probabilities
are P[X <= x], otherwise, P[X > x]
The generalized Pareto distribution function (Pickands, 1975) with parameters \(loc = a\), \(scale = b\) and \(shape = s\) is $$G(z) = 1 - \{1+s(z-a)/b\}^{-1/s}$$ for \(1+s(z-a)/b > 0\) and \(z > a\), where \(b > 0\). If \(s = 0\) the distribution is defined by continuity.
dGenPareto gives the density function, pGenPareto gives the
distribution function, qGenPareto gives the quantile function,
and rGenPareto generates random deviates.
Pickands, J. (1975) Statistical inference using Extreme Order statistics. Annals of Statistics, 3, 119–131.
dGenPareto(2:4, 1, 0.5, 0.8)
#> [1] 0.23299144 0.07919889 0.03831043
pGenPareto(2:4, 1, 0.5, 0.8)
#> [1] 0.6971111 0.8336823 0.8888998
qGenPareto(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
#> [1] 5.318483 3.639936 3.012506 2.675864
rGenPareto(6, 1, 0.5, 0.8)
#> [1] 4.320519 1.177982 1.073342 1.434377 1.367703 1.503896
p <- (1:9)/10
pGenPareto(qGenPareto(p, 1, 2, 0.8), 1, 2, 0.8)
#> [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9