CatTable helps printing a table, if is has to be broken into multiple rows. Rowlabels will be repeated after every new break.

CatTable(tab, wcol, nrepchars, width = getOption("width"))

Arguments

tab

the rows of a table to be printed, pasted together in one string with constant columnwidth.

wcol

integer, the width of the columns. All columns must have the same width.

nrepchars

integer, the number of characters to be repeated with every break. This is typically the maximum width of the rowlabels.

width

integer, the width of the whole table. Default is the width of the current command window (getOption("width")).

Author

Andri Signorell <andri@signorell.net>

See also

Examples

options(scipen=8)

# used in bivariate description functions
Desc(temperature ~ cut(delivery_min, breaks=40), data=d.pizza)
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> ────────────────────────────────────────────────────────────────────────────── 
#> temperature ~ cut(delivery_min, breaks = 40) (d.pizza)
#> 
#> Summary: 
#> n pairs: 1'209, valid: 1'170 (96.8%), missings: 39 (3.2%), groups: 39
#> 
#>                                                                        
#>         (8.74,10.2]  (10.2,11.6]  (11.6,13.1]  (13.1,14.5]  (14.5,15.9]
#> mean         54.804       54.129       52.824       53.818       50.899
#> median       56.900       57.300       56.200       55.750       53.350
#> sd            7.998        8.713        9.010        6.781        7.858
#> IQR           6.325        7.850        8.250        4.800       11.675
#> n                56           66           47           44           46
#> np           4.786%       5.641%       4.017%       3.761%       3.932%
#> NAs               0            0            0            0            0
#> 0s                0            0            0            0            0
#>                                                                        
#>         (15.9,17.3]  (17.3,18.7]  (18.7,20.2]  (20.2,21.6]    (21.6,23]
#> mean         51.493       51.058       53.452       50.693       49.807
#> median       53.750       53.900       55.950       53.000       51.800
#> sd            7.610        9.093        8.241        8.927        7.665
#> IQR           6.500        7.700        6.200        8.500        7.400
#> n                42           45           62           53           69
#> np           3.590%       3.846%       5.299%       4.530%       5.897%
#> NAs               0            0            0            0            0
#> 0s                0            0            0            0            0
#>                                                                        
#>           (23,24.4]  (24.4,25.8]  (25.8,27.3]  (27.3,28.7]  (28.7,30.1]
#> mean         48.987       50.027       48.825       45.970       49.851
#> median       50.900       50.900       49.300       48.600       49.700
#> sd            9.487        6.715        7.786        8.235        6.359
#> IQR           8.350        5.300        5.975        8.375        6.800
#> n                75           65           54           44           63
#> np           6.410%       5.556%       4.615%       3.761%       5.385%
#> NAs               0            0            0            0            0
#> 0s                0            0            0            0            0
#>                                                                        
#>         (30.1,31.5]  (31.5,32.9]  (32.9,34.4]  (34.4,35.8]  (35.8,37.2]
#> mean         44.037       46.931       46.223       42.550       40.203
#> median       46.000       47.400       46.800       43.950       42.200
#> sd            8.537        8.414        6.895        8.145        8.881
#> IQR           9.400        7.150        7.325        8.800       10.000
#> n                43           40           30           34           39
#> np           3.675%       3.419%       2.564%       2.906%       3.333%
#> NAs               0            7            6            4            2
#> 0s                0            0            0            0            0
#>                                                                        
#>         (37.2,38.6]    (38.6,40]    (40,41.5]  (41.5,42.9]  (42.9,44.3]
#> mean         39.388       37.885       37.535       39.107       36.042
#> median       41.950       43.300       36.500       38.200       38.050
#> sd            8.007       10.865        6.996        5.540        6.974
#> IQR           6.975       16.100        7.650        7.350        8.950
#> n                26           13           20           15           12
#> np           2.222%       1.111%       1.709%       1.282%       1.026%
#> NAs               3            1            3            6            2
#> 0s                0            0            0            0            0
#>                                                                        
#>         (44.3,45.7]  (45.7,47.1]  (47.1,48.6]    (48.6,50]    (50,51.4]
#> mean         37.987       36.791       31.262       32.033       30.483
#> median       38.700       41.100       32.250       33.600       28.800
#> sd            5.136        8.303        5.891        6.499        5.481
#> IQR           6.500       12.750        8.850        7.650        8.475
#> n                15           11            8            6            6
#> np           1.282%       0.940%       0.684%       0.513%       0.513%
#> NAs               1            0            0            0            0
#> 0s                0            0            0            0            0
#>                                                                        
#>         (51.4,52.8]  (52.8,54.2]  (54.2,55.7]  (55.7,57.1]  (57.1,58.5]
#> mean         32.140       29.467       26.450       33.000       26.300
#> median       31.800       33.000       27.100       33.000       26.300
#> sd            6.797        8.100        3.694  <NA>         <NA>       
#> IQR           9.000        7.500        5.100        0.000        0.000
#> n                 5            3            4            1            1
#> np           0.427%       0.256%       0.342%       0.085%       0.085%
#> NAs               1            3            0            0            0
#> 0s                0            0            0            0            0
#>                                                           
#>         (59.9,61.3]  (61.3,62.8]  (62.8,64.2]  (64.2,65.7]
#> mean         23.200       24.450       20.950       19.300
#> median       23.200       24.450       20.950       19.300
#> sd            0.707        1.768        2.192  <NA>       
#> IQR           0.500        1.250        1.550        0.000
#> n                 2            2            2            1
#> np           0.171%       0.171%       0.171%       0.085%
#> NAs               0            0            0            0
#> 0s                0            0            0            0
#> 
#> Kruskal-Wallis rank sum test:
#>   Kruskal-Wallis chi-squared = 438.79, df = 38, p-value < 2.2e-16
#> 
#> 
#> 



txt <- c( 
   paste(sample(letters, 500, replace=TRUE), collapse="")
 , paste(sample(letters, 500, replace=TRUE), collapse="")
 , paste(sample(letters, 500, replace=TRUE), collapse="")
)
txt <- paste(c("aaa","bbb","ccc"), txt, sep="")

CatTable(txt, nrepchars=3, wcol=5)
#> aaaaumjvmhrwbxfyunfeknittaaofujbkyrlkseybfbewmzteiwfovtibkxlxesgtfeodwmbjdrtjb
#> bbbnsejzsvejfvkflazpcaeiibpaxydxbgstpncdwdvujcbiyyrcywkvvwkafpksvbrtbxygavitcw
#> cccrxhgwkexjxndsaemqxvditfybvglhggzfhpvvmrpkaucrwfutnotsqnsgztbvnttdtklnkuwfqx
#> 
#> aaaqdvjxsmnimwoszjmafuvcosaqrooudnnqjpwvjqnfvvogueufmkvthpsrplwohdmnisadxnjxmm
#> bbbexvtewewraxuzqvevqihcyzpditaarpyxkrsyqhgqzmhmcgybiabxmyxptuqmsrsamivwmcylql
#> cccpiittupaevnuiqjihganwpjqiwskjmkfsvvnkmqyzapaswzrcxvomzkibxawohunddcztevzhxb
#> 
#> aaajskouokdvqnnrvhmtkcvkjjrzcdouvboxroufhisxwhlcoqctktgdmpqkudorgbevsozigplxuk
#> bbbesfgrjoihpvhpqkgudqvsrskurpfxbvwksuxkghbcxwnfngffkukexlvvzefoshhocdzamjxowz
#> ccceskbtxdekamakdipycrvxhjkemzwgyuoydxbafrcegfsieggwwluzutrgvjiphetvcbfjqljdsl
#> 
#> aaazyygxzwgxefafmjnxtfbtjwoxaaqtspqfumykqofiacftryyuvvqrbaukzzgwettknvgznnggwm
#> bbbhvudhtajepidmdpveyggzpzdbaqeeubkbhojstnopijgixsprymvrbwinhvssbgdrpsmfobqpxg
#> cccfkrtkrnzazvhjvdiwjjdertufvzveqnuzontuwceqojugydopmwjrkhczouobrcbvioinlorywt
#> 
#> aaagmacovjsamxqhozpjbanlsobgnoahsosgxucvvaiggkfccvgklulytibywnhwwevdmgmltmniek
#> bbbxkhlqxheanxhlrlerlbjbganuhbthhaclqnspjzrrdspglufkrbgynqlfazftwxheipnyuwidic
#> cccqllnijifvedzdkckmouuuzttqsiruuxcgulxabkdgoqqaeuvoupmfxsbruobsvemmnntrhqrqmg
#> 
#> aaavybzeywagidwpzwqyebzfwrduujnufpldfcaapkkcqvfrqatpjekywgpabwhllqgvhsvzkvahnr
#> bbbudqkstjyiucevdeplecsdjbtclehvsciadvqlyuslptverkrcxuzcngisgfcmreucspfvmibsjw
#> ccccyqweehgmmopgrnmyytghjuitogkmnnalrbhptbnlrywkgyamuliodjrlvthxvytlepcjudvmht
#>