Calculates the Breslow-Day test of homogeneity for a \(2 \times 2 \times k\) table, in order to investigate if all \(k\) strata have the same OR. If OR is not given, the Mantel-Haenszel estimate is used.

BreslowDayTest(x, OR = NA, correct = FALSE)

Arguments

x

a \(2 \times 2 \times k\) table.

OR

the odds ratio to be tested against. If left undefined (default) the Mantel-Haenszel estimate will be used.

correct

If TRUE, the Breslow-Day test with Tarone's adjustment is computed, which subtracts an adjustment factor to make the resulting statistic asymptotically chi-square.

Details

For the Breslow-Day test to be valid, the sample size should be relatively large in each stratum, and at least 80% of the expected cell counts should be greater than 5. Note that this is a stricter sample size requirement than the requirement for the Cochran-Mantel-Haenszel test for tables, in that each stratum sample size (not just the overall sample size) must be relatively large. Even when the Breslow-Day test is valid, it might not be very powerful against certain alternatives, as discussed in Breslow and Day (1980).

Alternatively, it might be better to cast the entire inference problem into the setting of a logistic regression model. Here, the underlying question of the Breslow-Day test can be answered by investigating whether an interaction term with the strata variable is necessary (e.g. using a likelihood ratio test using the anova function).

References

Breslow, N. E., N. E. Day (1980) The Analysis of Case-Control Studies Statistical Methods in Cancer Research: Vol. 1. Lyon, France, IARC Scientific Publications.

Tarone, R.E. (1985) On heterogeneity tests based on efficient scores, Biometrika, 72, pp. 91-95.

Jones, M. P., O'Gorman, T. W., Lemka, J. H., and Woolson, R. F. (1989) A Monte Carlo Investigation of Homogeneity Tests of the Odds Ratio Under Various Sample Size Configurations Biometrics, 45, 171-181

Breslow, N. E. (1996) Statistics in Epidemiology: The Case-Control Study Journal of the American Statistical Association, 91, 14-26.

Author

Michael Hoehle <hoehle@math.su.se>

See also

Examples

migraine <- xtabs(freq ~ .,
            cbind(expand.grid(treatment=c("active", "placebo"),
                              response =c("better", "same"),
                              gender   =c("female", "male")),
                  freq=c(16, 5, 11, 20, 12, 7, 16, 19))
            )

# get rid of gender
tab <- xtabs(Freq ~ treatment + response, migraine)
Desc(tab)
#> ────────────────────────────────────────────────────────────────────────────── 
#> tab (xtabs, table)
#> 
#> Summary: 
#> n: 106, rows: 2, columns: 2
#> 
#> Pearson's Chi-squared test (cont. adj):
#>   X-squared = 7.3178, df = 1, p-value = 0.006827
#> Fisher's exact test p-value = 0.00491
#> McNemar's chi-squared = 5.0256, df = 1, p-value = 0.02497
#> 
#>                     estimate lwr.ci upr.ci'
#>                                           
#> odds ratio            3.3704 1.4616 7.7721
#> rel. risk (col1)      2.1636 1.2375 3.7829
#> rel. risk (col2)      0.6420 0.4712 0.8746
#> prop. diff            0.2738 0.0898 0.4397
#> 
#> 
#> Contingency Coeff.     0.272
#> Cramer's V             0.282
#> Kendall Tau-b          0.282
#> 
#>                                            
#>             response   better   same    Sum
#> treatment                                  
#>                                            
#> active      freq           28     27     55
#>             perc        26.4%  25.5%  51.9%
#>             p.row       50.9%  49.1%      .
#>             p.col       70.0%  40.9%      .
#>                                            
#> placebo     freq           12     39     51
#>             perc        11.3%  36.8%  48.1%
#>             p.row       23.5%  76.5%      .
#>             p.col       30.0%  59.1%      .
#>                                            
#> Sum         freq           40     66    106
#>             perc        37.7%  62.3% 100.0%
#>             p.row           .      .      .
#>             p.col           .      .      .
#>                                            
#> 
#> ────────────────────
#> ' 95% conf. level
#> 


# only the women
female <- migraine[,, 1]
Desc(female)
#> ────────────────────────────────────────────────────────────────────────────── 
#> female (table)
#> 
#> Summary: 
#> n: 52, rows: 2, columns: 2
#> 
#> Pearson's Chi-squared test (cont. adj):
#>   X-squared = 6.7595, df = 1, p-value = 0.009325
#> Fisher's exact test p-value = 0.005189
#> McNemar's chi-squared = 1.5625, df = 1, p-value = 0.2113
#> 
#>                     estimate lwr.ci upr.ci'
#>                                           
#> odds ratio             5.818  1.676 20.203
#> rel. risk (col1)       2.963  1.274  6.891
#> rel. risk (col2)       0.509  0.310  0.836
#> prop. diff             0.393  0.127  0.606
#> 
#> 
#> Contingency Coeff.     0.371
#> Cramer's V             0.400
#> Kendall Tau-b          0.400
#> 
#>                                            
#>             response   better   same    Sum
#> treatment                                  
#>                                            
#> active      freq           16     11     27
#>             perc        30.8%  21.2%  51.9%
#>             p.row       59.3%  40.7%      .
#>             p.col       76.2%  35.5%      .
#>                                            
#> placebo     freq            5     20     25
#>             perc         9.6%  38.5%  48.1%
#>             p.row       20.0%  80.0%      .
#>             p.col       23.8%  64.5%      .
#>                                            
#> Sum         freq           21     31     52
#>             perc        40.4%  59.6% 100.0%
#>             p.row           .      .      .
#>             p.col           .      .      .
#>                                            
#> 
#> ────────────────────
#> ' 95% conf. level
#> 


# .. and the men
male <- migraine[,, 2]
Desc(male)
#> ────────────────────────────────────────────────────────────────────────────── 
#> male (table)
#> 
#> Summary: 
#> n: 54, rows: 2, columns: 2
#> 
#> Pearson's Chi-squared test (cont. adj):
#>   X-squared = 0.88353, df = 1, p-value = 0.3472
#> Fisher's exact test p-value = 0.2635
#> McNemar's chi-squared = 2.7826, df = 1, p-value = 0.09529
#> 
#>                     estimate  lwr.ci  upr.ci'
#>                                             
#> odds ratio            2.0357  0.6478  6.3975
#> rel. risk (col1)      1.5918  0.7413  3.4180
#> rel. risk (col2)      0.7820  0.5259  1.1626
#> prop. diff            0.1593 -0.0984  0.3962
#> 
#> 
#> Contingency Coeff.     0.164
#> Cramer's V             0.167
#> Kendall Tau-b          0.167
#> 
#>                                            
#>             response   better   same    Sum
#> treatment                                  
#>                                            
#> active      freq           12     16     28
#>             perc        22.2%  29.6%  51.9%
#>             p.row       42.9%  57.1%      .
#>             p.col       63.2%  45.7%      .
#>                                            
#> placebo     freq            7     19     26
#>             perc        13.0%  35.2%  48.1%
#>             p.row       26.9%  73.1%      .
#>             p.col       36.8%  54.3%      .
#>                                            
#> Sum         freq           19     35     54
#>             perc        35.2%  64.8% 100.0%
#>             p.row           .      .      .
#>             p.col           .      .      .
#>                                            
#> 
#> ────────────────────
#> ' 95% conf. level
#> 


BreslowDayTest(migraine)
#> 
#> 	Breslow-Day test on Homogeneity of Odds Ratios
#> 
#> data:  migraine
#> X-squared = 1.4929, df = 1, p-value = 0.2218
#> 
BreslowDayTest(migraine, correct = TRUE)
#> 
#> 	Breslow-Day Test on Homogeneity of Odds Ratios (with Tarone correction)
#> 
#> data:  migraine
#> X-squared = 1.4905, df = 1, p-value = 0.2221
#> 


salary <- array(
      c(38, 12, 102, 141, 12, 9, 136, 383),
      dim=c(2, 2, 2),
      dimnames=list(exposure=c("exposed", "not"),
                    disease =c("case", "control"),
                    salary  =c("<1000", ">=1000"))
                    )

# common odds ratio = 4.028269
BreslowDayTest(salary, OR = 4.02)
#> 
#> 	Breslow-Day test on Homogeneity of Odds Ratios
#> 
#> data:  salary
#> X-squared = 0.080143, df = 1, p-value = 0.7771
#>