Assocs.Rd
Collects a number of association measures for nominal and ordinal data.
Assocs(x, conf.level = 0.95, verbose = NULL)
# S3 method for class 'Assocs'
print(x, digits = 4, ...)
a 2 dimensional contingency table or a matrix.
confidence level of the interval. If set to NA
no confidence interval will be calculated. Default is 0.95.
integer out of c(2, 1, 3)
defining the verbosity of the reported results. 2 (default) means medium, 1 less and 3 extensive results.
Applies only to tables and is ignored else.
integer which determines the number of digits used in formatting the measures of association.
further arguments to be passed to or from methods.
This function wraps the association measures phi, contingency coefficient, Cramer's V, Goodman Kruskal's Gamma, Kendall's Tau-b, Stuart's Tau-c, Somers' Delta, Pearson and Spearman correlation, Guttman's Lambda, Theil's Uncertainty Coefficient and the mutual information.
numeric matrix, dimension [1:17, 1:3]
the first column contains the estimate, the second the lower confidence interval, the third the upper one.
options(scipen=8)
# Example taken from: SAS/STAT(R) 9.2 User's Guide, Second Edition, The FREQ Procedure
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# Hair-Eye-Color pp. 1816
tob <- as.table(matrix(c(
69, 28, 68, 51, 6,
69, 38, 55, 37, 0,
90, 47, 94, 94, 16
), nrow=3, byrow=TRUE,
dimnames=list(eye=c("blue","green","brown"),
hair=c("fair","red","medium","dark","black")) ))
Desc(tob)
#> ──────────────────────────────────────────────────────────────────────────────
#> tob (table)
#>
#> Summary:
#> n: 762, rows: 3, columns: 5
#>
#> Pearson's Chi-squared test:
#> X-squared = 20.925, df = 8, p-value = 0.00735
#> Log likelihood ratio (G-test) test of independence:
#> G = 25.973, X-squared df = 8, p-value = 0.001061
#> Mantel-Haenszel Chi-squared:
#> X-squared = 3.7838, df = 1, p-value = 0.05175
#>
#> Contingency Coeff. 0.163
#> Cramer's V 0.117
#> Kendall Tau-b 0.066
#>
#>
#> hair fair red medium dark black Sum
#> eye
#>
#> blue freq 69 28 68 51 6 222
#> perc 9.1% 3.7% 8.9% 6.7% 0.8% 29.1%
#> p.row 31.1% 12.6% 30.6% 23.0% 2.7% .
#> p.col 30.3% 24.8% 31.3% 28.0% 27.3% .
#>
#> green freq 69 38 55 37 0 199
#> perc 9.1% 5.0% 7.2% 4.9% 0.0% 26.1%
#> p.row 34.7% 19.1% 27.6% 18.6% 0.0% .
#> p.col 30.3% 33.6% 25.3% 20.3% 0.0% .
#>
#> brown freq 90 47 94 94 16 341
#> perc 11.8% 6.2% 12.3% 12.3% 2.1% 44.8%
#> p.row 26.4% 13.8% 27.6% 27.6% 4.7% .
#> p.col 39.5% 41.6% 43.3% 51.6% 72.7% .
#>
#> Sum freq 228 113 217 182 22 762
#> perc 29.9% 14.8% 28.5% 23.9% 2.9% 100.0%
#> p.row . . . . . .
#> p.col . . . . . .
#>
#>
Assocs(tob)
#> estimate lwr.ci upr.ci
#> Contingency Coeff. 0.1635 - -
#> Cramer V 0.1172 0.0329 0.1500
#> Kendall Tau-b 0.0661 0.0039 0.1284
#> Goodman Kruskal Gamma 0.0949 0.0057 0.1841
#> Stuart Tau-c 0.0691 0.0041 0.1340
#> Somers D C|R 0.0712 0.0042 0.1383
#> Somers D R|C 0.0614 0.0036 0.1192
#> Pearson Correlation 0.0705 -0.0005 0.1408
#> Spearman Correlation 0.0768 0.0058 0.1470
#> Lambda C|R 0.0075 0.0000 0.0571
#> Lambda R|C 0.0000 0.0000 0.0000
#> Lambda sym 0.0042 0.0000 0.0320
#> Uncertainty Coeff. C|R 0.0118 0.0050 0.0186
#> Uncertainty Coeff. R|C 0.0159 0.0067 0.0252
#> Uncertainty Coeff. sym 0.0135 0.0057 0.0214
#> Mutual Information 0.0246 - -
# Example taken from: http://www.math.wpi.edu/saspdf/stat/chap28.pdf
# pp. 1349
pain <- as.table(matrix(c(
26, 6,
26, 7,
23, 9,
18, 14,
9, 23
), ncol=2, byrow=TRUE))
Desc(pain)
#> ──────────────────────────────────────────────────────────────────────────────
#> pain (table)
#>
#> Summary:
#> n: 161, rows: 5, columns: 2
#>
#> Pearson's Chi-squared test:
#> X-squared = 26.603, df = 4, p-value = 0.00002392
#> Log likelihood ratio (G-test) test of independence:
#> G = 26.669, X-squared df = 4, p-value = 0.00002319
#> Mantel-Haenszel Chi-squared:
#> X-squared = 22.819, df = 1, p-value = 0.00000178
#>
#> Contingency Coeff. 0.377
#> Cramer's V 0.406
#> Kendall Tau-b 0.337
#>
#>
#> A B Sum
#>
#> A freq 26 6 32
#> perc 16.1% 3.7% 19.9%
#> p.row 81.2% 18.8% .
#> p.col 25.5% 10.2% .
#>
#> B freq 26 7 33
#> perc 16.1% 4.3% 20.5%
#> p.row 78.8% 21.2% .
#> p.col 25.5% 11.9% .
#>
#> C freq 23 9 32
#> perc 14.3% 5.6% 19.9%
#> p.row 71.9% 28.1% .
#> p.col 22.5% 15.3% .
#>
#> D freq 18 14 32
#> perc 11.2% 8.7% 19.9%
#> p.row 56.2% 43.8% .
#> p.col 17.6% 23.7% .
#>
#> E freq 9 23 32
#> perc 5.6% 14.3% 19.9%
#> p.row 28.1% 71.9% .
#> p.col 8.8% 39.0% .
#>
#> Sum freq 102 59 161
#> perc 63.4% 36.6% 100.0%
#> p.row . . .
#> p.col . . .
#>
#>
Assocs(pain)
#> estimate lwr.ci upr.ci
#> Contingency Coeff. 0.3766 - -
#> Cramer V 0.4065 0.2212 0.5411
#> Kendall Tau-b 0.3373 0.2103 0.4642
#> Goodman Kruskal Gamma 0.5313 0.3480 0.7146
#> Stuart Tau-c 0.4111 0.2547 0.5675
#> Somers D C|R 0.2569 0.1592 0.3547
#> Somers D R|C 0.4427 0.2723 0.6130
#> Pearson Correlation 0.3776 0.2368 0.5029
#> Spearman Correlation 0.3771 0.2362 0.5024
#> Lambda C|R 0.2373 0.0732 0.4014
#> Lambda R|C 0.1250 0.0000 0.2547
#> Lambda sym 0.1604 0.0388 0.2821
#> Uncertainty Coeff. C|R 0.1261 0.0346 0.2175
#> Uncertainty Coeff. R|C 0.0515 0.0140 0.0890
#> Uncertainty Coeff. sym 0.0731 0.0199 0.1262
#> Mutual Information 0.1195 - -