power.chisq.test.Rd
Compute power of test or determine parameters to obtain target
power (same as power.anova.test
).
power.chisq.test(n = NULL, w = NULL, df = NULL, sig.level = 0.05, power = NULL)
Exactly one of the parameters w
, n
, power
or
sig.level
must be passed as NULL, and this parameter is
determined from the others. Note that the last one has non-NULL
default, so NULL
must be explicitly passed, if you want to compute
it.
Object of class "power.htest", a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.
Cohen, J. (1988) Statistical power analysis for the behavioral sciences (2nd ed.) Hillsdale, NJ: Lawrence Erlbaum.
uniroot
is used to solve power equation for unknowns, so you may
see errors from it, notably about inability to bracket the root
when invalid arguments are given.
## Exercise 7.1 P. 249 from Cohen (1988)
power.chisq.test(w=0.289, df=(4-1), n=100, sig.level=0.05)
#>
#> Chi squared power calculation
#>
#> w = 0.289
#> n = 100
#> df = 3
#> sig.level = 0.05
#> power = 0.675
#>
#> NOTE: n is the number of observations
#>
## Exercise 7.3 p. 251
power.chisq.test(w=0.346, df=(2-1)*(3-1), n=140, sig.level=0.01)
#>
#> Chi squared power calculation
#>
#> w = 0.346
#> n = 140
#> df = 2
#> sig.level = 0.01
#> power = 0.885
#>
#> NOTE: n is the number of observations
#>
## Exercise 7.8 p. 270
power.chisq.test(w=0.1, df=(5-1)*(6-1), power=0.80, sig.level=0.05)
#>
#> Chi squared power calculation
#>
#> w = 0.1
#> n = 2096
#> df = 20
#> sig.level = 0.05
#> power = 0.8
#>
#> NOTE: n is the number of observations
#>