d.diamonds.Rd
As I suppose, an artificial dataset
data(d.diamonds)
A data frame with 440 observations on the following 10 variables.
index
a numeric vector
carat
a numeric vector
colour
a factor with levels D
E
F
G
H
I
J
K
L
clarity
an ordered factor with levels I2
< I1
< SI3
< SI2
< SI1
< VS2
< VS1
< VVS2
< VVS1
cut
an ordered factor with levels F
< G
< V
< X
< I
certification
a factor with levels AGS
DOW
EGL
GIA
IGI
polish
an ordered factor with levels F
< G
< V
< X
< I
symmetry
an ordered factor with levels F
< G
< V
< X
< I
price
a numeric vector
wholesaler
a factor with levels A
B
C
P Poor F Fair G Good V Very good X Excellent I Ideal
somewhere from the net...
data(d.diamonds)
str(d.diamonds)
#> 'data.frame': 440 obs. of 10 variables:
#> $ index : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ carat : num 0.92 0.92 0.82 0.81 0.9 0.87 0.8 0.84 0.8 0.8 ...
#> $ colour : Factor w/ 9 levels "D","E","F","G",..: 6 6 3 4 7 3 1 3 1 1 ...
#> $ clarity : Ord.factor w/ 9 levels "I2"<"I1"<"SI3"<..: 4 4 4 5 6 4 4 5 4 4 ...
#> $ cut : Ord.factor w/ 5 levels "F"<"G"<"V"<"X"<..: 2 3 5 5 3 5 5 2 3 3 ...
#> $ certification: Factor w/ 5 levels "AGS","DOW","EGL",..: 1 1 4 4 4 1 4 4 4 4 ...
#> $ polish : Ord.factor w/ 5 levels "F"<"G"<"V"<"X"<..: 3 2 4 4 3 2 3 3 3 3 ...
#> $ symmetry : Ord.factor w/ 5 levels "F"<"G"<"V"<"X"<..: 3 2 4 3 3 3 3 3 3 4 ...
#> $ price : int 3000 3000 3004 3004 3006 3007 3008 3010 3012 3012 ...
#> $ wholesaler : Factor w/ 3 levels "A","B","C": 1 1 1 1 1 1 1 1 1 1 ...