The function UnirootAll searches the interval from lower to upper for several roots (i.e., zero's) of a function f with respect to its first argument.

UnirootAll(f, interval, lower = min(interval), upper = max(interval),
            tol = .Machine$double.eps^0.5, maxiter = 1000, n = 100, ...)

Arguments

f

the function for which the root is sought.

interval

a vector containing the end-points of the interval to be searched for the root.

lower

the lower end point of the interval to be searched.

upper

the upper end point of the interval to be searched.

tol

the desired accuracy (convergence tolerance).

maxiter

the maximum number of iterations.

n

number of subintervals in which the root is sought.

...

additional named or unnamed arguments to be passed to f (but beware of partial matching to other arguments).

Note

This is a verbatim copy from rootSolve::uniroot.all (v. 1.7).

Value

a vector with the roots found in the interval

Author

Karline Soetaert <karline.soetaert@nioz.nl>

Details

f will be called as f(x, ...) for a numeric value of x.

Run demo(Jacobandroots) for an example of the use of UnirootAll for steady-state analysis.

See also second example of gradient This example is discussed in the book by Soetaert and Herman (2009).

See also

uniroot for more information about input.

Note

The function calls uniroot, the basic R-function.

It is not guaranteed that all roots will be recovered.

This will depend on n, the number of subintervals in which the interval is divided.

If the function "touches" the X-axis (i.e. the root is a saddle point), then this root will generally not be retrieved. (but chances of this are pretty small).

Whereas unitroot passes values one at a time to the function, UnirootAll passes a vector of values to the function. Therefore f should be written such that it can handle a vector of values. See last example.

Examples

## =======================================================================
##   Mathematical examples
## =======================================================================

# a well-behaved case...
fun <- function (x) cos(2*x)^3

curve(fun(x), 0, 10,main = "UnirootAll")

All <- UnirootAll(fun, c(0, 10))
points(All, y = rep(0, length(All)), pch = 16, cex = 2)


# a difficult case...
f <- function (x) 1/cos(1+x^2)
AA <- UnirootAll(f, c(-5, 5))
curve(f(x), -5, 5, n = 500, main = "UnirootAll")
points(AA, rep(0, length(AA)), col = "red", pch = 16)


f(AA)  # !!!
#>  [1] -19783385  10048135 -17778378  17716401  19705646  21300284 -61531208
#>  [8] -52150718 -52150685 -61531329  21300313  19705621  17716401 -17778378
#> [15]  10048135 -19783436


## =======================================================================
## Vectorisation:
## =======================================================================
# from R-help Digest, Vol 130, Issue 27
# https://stat.ethz.ch/pipermail/r-help/2013-December/364799.html

integrand1 <- function(x) 1/x*dnorm(x)
integrand2 <- function(x) 1/(2*x-50)*dnorm(x)
integrand3 <- function(x, C) 1/(x+C)

res <- function(C) {
  integrate(integrand1, lower = 1, upper = 50)$value +
  integrate(integrand2, lower = 50, upper = 100)$value -
  integrate(integrand3, C = C, lower = 1, upper = 100)$value
}

# uniroot passes one value at a time to the function, so res can be used as such
uniroot(res, c(1, 1000))
#> $root
#> [1] 837
#> 
#> $f.root
#> [1] 0.0000000000162
#> 
#> $iter
#> [1] 9
#> 
#> $init.it
#> [1] NA
#> 
#> $estim.prec
#> [1] 0.000061
#> 

# Need to vectorise the function to use UnirootAll:
res <- Vectorize(res)
UnirootAll(res, c(1,1000))
#> [1] 837