Sort a vector, a matrix, a table or a data.frame. The base sort function does not have an interface for classes other than vectors and coerces the whole world to a vector. This means you get a sorted vector as result while passing a matrix to sort.
Sort wraps the base sort function and adds an interface for sorting the rows of the named 2-dimensional data structures by the order of one or more of its columns.

Sort(x, ...)

# Default S3 method
Sort(x, ...)
# S3 method for class 'matrix'
Sort(x, ord = NULL, decreasing = FALSE, na.last = TRUE, ...)
# S3 method for class 'table'
Sort(x, ord = NULL, decreasing = FALSE, na.last = TRUE, ...)
# S3 method for class 'data.frame'
Sort(x, ord = NULL, decreasing = FALSE,
                factorsAsCharacter = TRUE, na.last = TRUE, ...)

Arguments

x

a numeric, complex. character or logical vector, a factor, a table or a data.frame to be sorted.

decreasing

logical. Should the sort be increasing or decreasing?

factorsAsCharacter

logical. Should factors be sorted by the alphabetic order of their labels or by the order or their levels. Default is TRUE (by labels).

ord

vector of integers or columnames. Defines the columns in a table, in a matrix or in a data.frame to be sorted for.
0 means row.names, 1:n the columns and n+1 the marginal sum. See examples.

na.last

for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed (see order.)

...

further arguments to be passed to or from methods.

Details

The sort order for factors is the order of their levels (which is particularly appropriate for ordered factors), and usually confusing for unordered factors, whose levels may be defined in the sequence in which they appear in the data (which normally is unordered).

Value

the sorted object.

Author

Andri Signorell <andri@signorell.net>

See also

Examples

d.frm <- d.pizza[1:10, c("driver","temperature","delivery_min")]

Sort(d.frm[,1])
#>  [1] Butcher Butcher Carter  Carter  Taylor  Taylor  Taylor  Taylor  Taylor 
#> [10] Taylor 
#> Levels: Butcher Carpenter Carter Farmer Hunter Miller Taylor
# Sort follows the levels by default
levels(d.frm[,1])
#> [1] "Butcher"   "Carpenter" "Carter"    "Farmer"    "Hunter"    "Miller"   
#> [7] "Taylor"   

Sort(x=d.frm, ord="driver", decreasing=FALSE)
#>     driver temperature delivery_min
#> 2  Butcher        56.4         19.6
#> 3  Butcher        36.5         17.8
#> 5   Carter        50.0         21.8
#> 10  Carter        54.4         24.3
#> 1   Taylor        53.0         20.0
#> 4   Taylor          NA         37.3
#> 6   Taylor        27.0         48.7
#> 7   Taylor        33.9         49.3
#> 8   Taylor        54.8         25.6
#> 9   Taylor        48.0         26.4
# set factorsAsCharacter = TRUE, if alphabetical order is required
Sort(x=d.frm, ord="driver", decreasing=FALSE, factorsAsCharacter=TRUE)
#>     driver temperature delivery_min
#> 2  Butcher        56.4         19.6
#> 3  Butcher        36.5         17.8
#> 5   Carter        50.0         21.8
#> 10  Carter        54.4         24.3
#> 1   Taylor        53.0         20.0
#> 4   Taylor          NA         37.3
#> 6   Taylor        27.0         48.7
#> 7   Taylor        33.9         49.3
#> 8   Taylor        54.8         25.6
#> 9   Taylor        48.0         26.4

Sort(x=d.frm, ord=c("driver","delivery_min"), factorsAsCharacter = TRUE)
#>     driver temperature delivery_min
#> 3  Butcher        36.5         17.8
#> 2  Butcher        56.4         19.6
#> 5   Carter        50.0         21.8
#> 10  Carter        54.4         24.3
#> 1   Taylor        53.0         20.0
#> 8   Taylor        54.8         25.6
#> 9   Taylor        48.0         26.4
#> 4   Taylor          NA         37.3
#> 6   Taylor        27.0         48.7
#> 7   Taylor        33.9         49.3
Sort(x=d.frm, ord=c("driver","delivery_min"), factorsAsCharacter = FALSE)
#>     driver temperature delivery_min
#> 3  Butcher        36.5         17.8
#> 2  Butcher        56.4         19.6
#> 5   Carter        50.0         21.8
#> 10  Carter        54.4         24.3
#> 1   Taylor        53.0         20.0
#> 8   Taylor        54.8         25.6
#> 9   Taylor        48.0         26.4
#> 4   Taylor          NA         37.3
#> 6   Taylor        27.0         48.7
#> 7   Taylor        33.9         49.3

Sort(x=d.frm, ord=c("driver","delivery_min"), decreasing=c(FALSE, TRUE),
  factorsAsCharacter = FALSE)
#>     driver temperature delivery_min
#> 2  Butcher        56.4         19.6
#> 3  Butcher        36.5         17.8
#> 10  Carter        54.4         24.3
#> 5   Carter        50.0         21.8
#> 7   Taylor        33.9         49.3
#> 6   Taylor        27.0         48.7
#> 4   Taylor          NA         37.3
#> 9   Taylor        48.0         26.4
#> 8   Taylor        54.8         25.6
#> 1   Taylor        53.0         20.0

# Sorting tables
tab <- table(d.pizza$driver, d.pizza$area)

Sort(x=tab, ord=c(0,2), decreasing=c(TRUE, FALSE))
#>            
#>             Brent Camden Westminster
#>   Taylor       42    142          20
#>   Miller        6     41          77
#>   Hunter      128      4          24
#>   Farmer       19     87          11
#>   Carter      177     47           5
#>   Carpenter    29     19         221
#>   Butcher      72      1          22
Sort(x=tab, ord=2, decreasing=TRUE)
#>            
#>             Brent Camden Westminster
#>   Taylor       42    142          20
#>   Farmer       19     87          11
#>   Carter      177     47           5
#>   Miller        6     41          77
#>   Carpenter    29     19         221
#>   Hunter      128      4          24
#>   Butcher      72      1          22

# partial matching ok:
Sort(tab, o=1, d=TRUE)
#>            
#>             Brent Camden Westminster
#>   Carter      177     47           5
#>   Hunter      128      4          24
#>   Butcher      72      1          22
#>   Taylor       42    142          20
#>   Carpenter    29     19         221
#>   Farmer       19     87          11
#>   Miller        6     41          77