ScheffeTest.RdScheffe's method applies to the set of estimates of all possible contrasts among the factor level means, not just the pairwise differences considered by Tukey's method.
ScheffeTest(x, ...)
# S3 method for class 'formula'
ScheffeTest(formula, data, subset, na.action, ...)
# S3 method for class 'aov'
ScheffeTest(x, which = NULL, contrasts = NULL,
conf.level = 0.95, ...)
# Default S3 method
ScheffeTest(x, g = NULL, which = NULL,
contrasts = NULL, conf.level = 0.95, ...)either a fitted model object, usually an aov fit, when g is left to NULL or a response variable to be evalutated by g (which mustn't be NULL then).
the grouping variable.
character vector listing terms in the fitted model for which the intervals should be calculated. Defaults to all the terms.
a \(r \times c\) matrix containing the contrasts to be computed, while r is the number of factor levels and c the number of contrasts. Each column must contain a full contrast ("sum") adding up to 0. Note that the argument which must be defined, when non default contrasts are used.
Default value of contrasts is NULL. In this case all pairwise contrasts will be reported.
numeric value between zero and one giving the confidence level to use. If this is set to NA, just a matrix with the p-values will be returned.
a formula of the form lhs ~ rhs where lhs
gives the data values and rhs the corresponding groups.
an optional matrix or data frame (or similar: see
model.frame) containing the variables in the
formula formula. By default the variables are taken from
environment(formula).
an optional vector specifying a subset of observations to be used.
a function which indicates what should happen when
the data contain NAs. Defaults to
getOption("na.action").
further arguments, currently not used.
A list of classes c("PostHocTest"), with one component for each term requested in which. Each component is a matrix with columns diff giving the difference in the observed means, lwr.ci giving the lower end point of the interval, upr.ci giving the upper end point and pval giving the p-value after adjustment for the multiple comparisons.
There are print and plot methods for class "PostHocTest". The plot method does not accept xlab, ylab or main arguments and creates its own values for each plot.
Robert O. Kuehl, Steel R. (2000) Design of experiments. Duxbury
Steel R.G.D., Torrie J.H., Dickey, D.A. (1997) Principles and Procedures of Statistics, A Biometrical Approach. McGraw-Hill
fm1 <- aov(breaks ~ wool + tension, data = warpbreaks)
ScheffeTest(x=fm1)
#>
#> Posthoc multiple comparisons of means: Scheffe Test
#> 95% family-wise confidence level
#>
#> $wool
#> diff lwr.ci upr.ci pval
#> B-A -5.777778 -14.92513 3.369576 0.3526
#>
#> $tension
#> diff lwr.ci upr.ci pval
#> M-L -10.000000 -21.20317 1.203174 0.0970 .
#> H-L -14.722222 -25.92540 -3.519048 0.0050 **
#> H-M -4.722222 -15.92540 6.480952 0.6869
#>
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
ScheffeTest(x=fm1, which="tension")
#>
#> Posthoc multiple comparisons of means: Scheffe Test
#> 95% family-wise confidence level
#>
#> $tension
#> diff lwr.ci upr.ci pval
#> M-L -10.000000 -21.20317 1.203174 0.0970 .
#> H-L -14.722222 -25.92540 -3.519048 0.0050 **
#> H-M -4.722222 -15.92540 6.480952 0.6869
#>
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
TukeyHSD(fm1)
#> Tukey multiple comparisons of means
#> 95% family-wise confidence level
#>
#> Fit: aov(formula = breaks ~ wool + tension, data = warpbreaks)
#>
#> $wool
#> diff lwr upr p adj
#> B-A -5.777778 -12.12841 0.5728505 0.0736137
#>
#> $tension
#> diff lwr upr p adj
#> M-L -10.000000 -19.35342 -0.6465793 0.0336262
#> H-L -14.722222 -24.07564 -5.3688015 0.0011218
#> H-M -4.722222 -14.07564 4.6311985 0.4474210
#>
# some special contrasts
y <- c(7,33,26,27,21,6,14,19,6,11,11,18,14,18,19,14,9,12,6,
24,7,10,1,10,42,25,8,28,30,22,17,32,28,6,1,15,9,15,
2,37,13,18,23,1,3,4,6,2)
group <- factor(c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6))
r.aov <- aov(y ~ group)
ScheffeTest(r.aov, contrasts=matrix( c(1,-0.5,-0.5,0,0,0,
0,0,0,1,-0.5,-0.5), ncol=2) )
#>
#> Posthoc multiple comparisons of means: Scheffe Test
#> 95% family-wise confidence level
#>
#> $group
#> diff lwr.ci upr.ci pval
#> 1-2,3 7.2500 -6.417446 20.91745 0.6367
#> 4-5,6 14.0625 0.395054 27.72995 0.0401 *
#>
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
# just p-values:
ScheffeTest(r.aov, conf.level=NA)
#>
#> Posthoc multiple comparisons of means: Scheffe Test
#>
#> $group
#> 1 2 3 4 5
#> 2 0.927 - - - -
#> 3 0.531 0.977 - - -
#> 4 0.848 0.273 0.054 - -
#> 5 0.940 1.000 0.970 0.296 -
#> 6 0.400 0.934 1.000 0.031 0.920
#>
#>