LeveneTest.Rd
Computes Levene's test for homogeneity of variance across groups.
LeveneTest(y, ...)
# S3 method for class 'formula'
LeveneTest(formula, data, ...)
# S3 method for class 'lm'
LeveneTest(y, ...)
# Default S3 method
LeveneTest(y, group, center=median, ...)
response variable for the default method, or a lm
or
formula
object. If y
is a linear-model object or a formula,
the variables on the right-hand-side of the model must all be factors and
must be completely crossed.
factor defining groups.
The name of a function to compute the center of each group;
mean
gives the original Levene's test; the default, median
,
provides a more robust test (Brown-Forsythe-Test).
a formula of the form lhs ~ rhs
where lhs
gives the data values and rhs
the corresponding groups.
an optional matrix or data frame (or similar: see
model.frame
) containing the variables in the
formula formula
. By default the variables are taken from
environment(formula)
.
arguments to be passed down, e.g., data
for the
formula
and lm
methods; can also be used to pass arguments to
the function given by center
(e.g., center=mean
and
trim=0.1
specify the 10% trimmed mean).
returns an object meant to be printed showing the results of the test.
This function was previously published as leveneTest() in the library(car) and has been integrated here without logical changes.
Fox, J. (2008) Applied Regression Analysis and Generalized Linear Models, Second Edition. Sage.
Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition, Sage.
fligner.test
for a rank-based (nonparametric)
\(k\)-sample test for homogeneity of variances;
mood.test
for another rank-based two-sample test for a
difference in scale parameters;
var.test
and bartlett.test
for parametric
tests for the homogeneity in variance.
ansari_test
in package coin
for exact and approximate conditional p-values for the
Ansari-Bradley test, as well as different methods for handling ties.
## example from ansari.test:
## Hollander & Wolfe (1973, p. 86f):
## Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,
100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
LeveneTest( c(ramsay, jung.parekh),
factor(c(rep("ramsay",length(ramsay)), rep("jung.parekh",length(jung.parekh)))))
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 1 1.7865 0.1893
#> 38
LeveneTest( c(rnorm(10), rnorm(10, 0, 2)), factor(rep(c("A","B"),each=10)) )
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 1 0.1475 0.7055
#> 18
if (FALSE) { # \dontrun{
# original example from package car
with(Moore, LeveneTest(conformity, fcategory))
with(Moore, LeveneTest(conformity, interaction(fcategory, partner.status)))
LeveneTest(conformity ~ fcategory * partner.status, data = Moore)
LeveneTest(conformity ~ fcategory * partner.status, data = Moore, center = mean)
LeveneTest(conformity ~ fcategory * partner.status, data = Moore, center = mean, trim = 0.1)
LeveneTest(lm(conformity ~ fcategory*partner.status, data = Moore))
} # }