KendallTauA.Rd
Calculate Kendall's tau-a statistic, a measure of
association for ordinal factors in a two-way table.
The function has interfaces for a table (matrix) and for single vectors.
KendallTauA(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...)
a numeric vector or a table. A matrix will be treated as table.
NULL (default) or a vector with compatible dimensions to x
. If y is provided, table(x, y, ...)
is calculated.
direction of the calculation. Can be "row"
(default) or "column"
, where
"row"
calculates Kendall's tau-a (R|C) ("column dependent").
confidence level of the interval. If set to NA
(which is the default) no confidence interval will be calculated.
further arguments are passed to the function table
, allowing i.e. to set useNA. This refers only to the vector interface.
Kendall's tau coefficient (sometimes called "Kendall rank correlation coefficient"), is a statistic used to measure the association between two measured quantities. It is a measure of rank correlation: the similarity of the orderings of the data when ranked by each of the quantities.
Kendall's tau-a is computed as $$ \tau_a(C|R) = \frac{P-Q}{\frac{1}{2} \cdot n \cdot (n-1)}$$
where P equals twice the number of concordances and Q twice the number of discordances. Its range is [-1, 1].
(Note that Kendall tau-a does not take into consideration any ties, which makes it unpractical. Consider using KendallTauB
(Tau-b) when ties are present.)
a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval
Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp. 57-59.
Hollander, M, Wolfe, D. A., Chicken, E. (2014) Nonparametric Statistical Methods, Third edition, Wiley,
Liebetrau, A. M. (1983) Measures of Association, Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-004. Newbury Park, CA: Sage, pp. 49-56
ConDisPairs
yields concordant and discordant pairs
Other association measures: cor (method="kendall")
for Tau b, StuartTauC
, GoodmanKruskalGamma
Lambda
, UncertCoef
, MutInf
# example in:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. S. 1821
tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))
# Kendall's tau-a C|R
KendallTauA(tab, direction="column", conf.level=0.95)
#> tau_a lwr.ci upr.ci
#> 0.2068323 0.1771300 0.2365346
# Kendall's tau-a R|C
KendallTauA(tab, direction="row", conf.level=0.95)
#> tau_a lwr.ci upr.ci
#> 0.2068323 0.1771300 0.2365346
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. 1814 (143)
tab <- as.table(cbind(c(11,2),c(4,6)))
KendallTauA(tab, direction="row", conf.level=0.95)
#> tau_a lwr.ci upr.ci
#> 0.22924901 0.07441035 0.38408768
KendallTauA(tab, direction="column", conf.level=0.95)
#> tau_a lwr.ci upr.ci
#> 0.22924901 0.07441035 0.38408768
# Liebetrau, pp. 52
x <- c(1,2,2,3,3,3,4,5)
y <- c(1,3,2,1,5,3,4,5)
ConDisPairs(table(x, y))
#> $pi.c
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 6 5 3 2 0
#> [2,] 4 5 4 3 1
#> [3,] 2 3 4 4 3
#> [4,] 1 3 4 6 5
#> [5,] 0 2 3 5 6
#>
#> $pi.d
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0 1 2 4 5
#> [2,] 0 1 1 2 3
#> [3,] 2 1 0 0 1
#> [4,] 4 3 1 1 0
#> [5,] 5 4 2 1 0
#>
#> $C
#> [1] 18
#>
#> $D
#> [1] 3
#>
KendallTauA(x, y, conf.level=0.95)
#> tau_a lwr.ci upr.ci
#> 0.5357143 0.1324073 0.9390213