Computes kappa as an index of interrater agreement between m raters on categorical data.

KappaM(x, method = c("Fleiss", "Conger", "Light"), conf.level = NA)

Arguments

x

\(n \times m\) matrix or dataframe, n subjects m raters.

method

a logical indicating whether the exact Kappa (Conger, 1980), the Kappa described by Fleiss (1971) or Light's Kappa (1971) should be computed.

conf.level

confidence level of the interval. If set to NA (which is the default) no confidence intervals will be calculated.

Details

Missing data are omitted in a listwise way.
The coefficient described by Fleiss (1971) does not reduce to Cohen's Kappa (unweighted) for m=2 raters. Therefore, the exact Kappa coefficient, which is slightly higher in most cases, was proposed by Conger (1980).
Light's Kappa equals the average of all possible combinations of bivariate Kappas between raters.
The confidence levels can only be reported using Fleiss' formulation of Kappa.

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval

References

Conger, A.J. (1980): Integration and generalisation of Kappas for multiple raters. Psychological Bulletin, 88, 322-328

Fleiss, J.L. (1971): Measuring nominal scale agreement among many raters Psychological Bulletin, 76, 378-382

Fleiss, J.L., Levin, B., & Paik, M.C. (2003): Statistical Methods for Rates and Proportions, 3rd Edition. New York: John Wiley & Sons

Light, R.J. (1971): Measures of response agreement for qualitative data: Some generalizations and alternatives. Psychological Bulletin, 76, 365-377.

Note

This function was previously published as kappam.fleiss() in the irr package and has been integrated here with some changes in the interface.

Author

Matthias Gamer, with some modifications by Andri Signorell <andri@signorell.net>

See also

Examples

statement <- data.frame(
  A=c(2,3,1,3,1,2,1,2,3,3,3,3,3,2,1,3,3,2,2,1,
      2,1,3,3,2,2,1,2,1,1,2,3,3,3,3,3,1,2,1,1),
  B=c(2,2,2,1,1,2,1,2,3,3,2,3,1,3,1,1,3,2,1,2,
      2,1,3,2,2,2,3,2,1,1,2,2,3,3,3,3,2,2,2,3),
  C=c(2,2,2,1,1,2,1,2,3,3,2,3,3,3,3,2,2,2,2,3,
      2,2,3,3,2,2,3,2,2,2,2,3,3,3,3,3,3,2,2,2),
  D=c(2,2,2,1,1,2,1,2,3,3,2,3,3,3,3,3,2,2,2,2,
      3,1,3,2,2,2,1,2,2,1,2,3,3,3,3,3,3,2,2,1),
  E=c(2,2,2,3,3,2,3,1,3,3,2,3,3,3,3,3,2,2,2,3,
      2,3,3,2,2,2,3,2,1,3,2,3,3,1,3,3,3,2,2,1)
)

KappaM(statement)
#> [1] 0.4809414

KappaM(statement, method="Conger")   # Exact Kappa
#> [1] 0.4844042
KappaM(statement, conf.level=0.95)   # Fleiss' Kappa and confidence intervals
#>     kappa    lwr.ci    upr.ci 
#> 0.4809414 0.4086236 0.5532593 

KappaM(statement, method="Light")   # Exact Kappa
#> [1] 0.4868577