CramerVonMisesTest.Rd
Performs the Cramer-von Mises test for the composite hypothesis of normality, see e.g. Thode (2002, Sec. 5.1.3).
CramerVonMisesTest(x)
The Cramer-von Mises test is an EDF omnibus test for the composite hypothesis of normality. The test statistic is $$ W = \frac{1}{12 n} + \sum_{i=1}^{n} \left (p_{(i)} - \frac{2i-1}{2n} \right), $$ where \(p_{(i)} = \Phi([x_{(i)} - \overline{x}]/s)\). Here, \(\Phi\) is the cumulative distribution function of the standard normal distribution, and \(\overline{x}\) and \(s\) are mean and standard deviation of the data values. The p-value is computed from the modified statistic \(Z=W (1.0 + 0.5/n)\) according to Table 4.9 in Stephens (1986).
A list of class htest
, containing the following components:
the value of the Cramer-von Mises statistic.
the p-value for the test.
the character string “Cramer-von Mises normality test”.
a character string giving the name(s) of the data.
Stephens, M.A. (1986) Tests based on EDF statistics In: D'Agostino, R.B. and Stephens, M.A., eds.: Goodness-of-Fit Techniques. Marcel Dekker, New York.
Thode Jr., H.C. (2002) Testing for Normality Marcel Dekker, New York.
shapiro.test
for performing the Shapiro-Wilk test for normality.
AndersonDarlingTest
, LillieTest
,
PearsonTest
, ShapiroFranciaTest
for performing further tests for normality.
qqnorm
for producing a normal quantile-quantile plot.
CramerVonMisesTest(rnorm(100, mean = 5, sd = 3))
#>
#> Cramer-von Mises normality test
#>
#> data: rnorm(100, mean = 5, sd = 3)
#> W = 0.045832, p-value = 0.5716
#>
CramerVonMisesTest(runif(100, min = 2, max = 4))
#>
#> Cramer-von Mises normality test
#>
#> data: runif(100, min = 2, max = 4)
#> W = 0.28912, p-value = 0.0004285
#>