MAE.Rd
Some measures of model accuracy like mean absolute error (MAE), mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), mean squared error (MSE) and root mean squared error (RMSE).
MAE(x, ...)
# Default S3 method
MAE(x, ref, na.rm = FALSE, ...)
# S3 method for class 'lm'
MAE(x, ...)
MAPE(x, ...)
# Default S3 method
MAPE(x, ref, na.rm = FALSE, ...)
# S3 method for class 'lm'
MAPE(x, ...)
SMAPE(x, ...)
# Default S3 method
SMAPE(x, ref, na.rm = FALSE, ...)
# S3 method for class 'lm'
SMAPE(x, ...)
MSE(x, ...)
# Default S3 method
MSE(x, ref, na.rm = FALSE, ...)
# S3 method for class 'lm'
MSE(x, ...)
RMSE(x, ...)
# Default S3 method
RMSE(x, ref, na.rm = FALSE, ...)
# S3 method for class 'lm'
RMSE(x, ...)
NMAE(x, ref, train.y)
NMSE(x, ref, train.y)
The function will remove NA
values first (if requested).
MAE calculates the mean absolute error:
$$\frac{1}{n} \cdot \sum_{i=1}^{n}\left | ref_{i}-x_{i} \right |$$
MAPE calculates the mean absolute percentage error:
$$\frac{1}{n} \cdot \sum_{i=1}^{n}\left | \frac{ref_{i}-x_{i}}{ref_{i}} \right |$$
SMAPE calculates the symmetric mean absolute percentage error:
$$\frac{1}{n} \cdot \sum_{i=1}^{n}\frac{2 \cdot \left | ref_{i}-x_{i} \right |}{\left | ref_{i} \right | + \left | x_{i} \right |}$$
MSE calculates mean squared error:
$$\frac{1}{n} \cdot \sum_{i=1}^{n}\left ( ref_{i}-x_{i} \right )^2$$
RMSE calculates the root mean squared error:
$$\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n}\left ( ref_{i}-x_{i} \right )^2}$$
the specific numeric value
Armstrong, J. S. (1985) Long-range Forecasting: From Crystal Ball to Computer, 2nd. ed. Wiley. ISBN 978-0-471-82260-8
https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
Torgo, L. (2010) Data Mining with R: Learning with Case Studies, Chapman and Hall/CRC Press